This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
DATANOMIQ Jobskills Webapp The whole web app is hosted and deployed on the Microsoft Azure Cloud via CI/CD and Infrastructure as Code (IaC). For DATANOMIQ this is a show-case of the coming Data as a Service ( DaaS ) Business. The post Monitoring of Jobskills with DataEngineering & AI appeared first on Data Science Blog.
The creation of this data model requires the data connection to the source system (e.g. SAP ERP), the extraction of the data and, above all, the data modeling for the event log. DATANOMIQ Data Mesh Cloud Architecture – This image is animated! Central data models in a cloud-based Data Mesh Architecture (e.g.
Faster Training and Inference Using the Azure Container for PyTorch in Azure ML If you’ve ever wished that you could speed up the training of a large PyTorch model, then this post is for you. In this post, we’ll cover the basics of this new environment, and we’ll show you how you can use it within your Azure ML project.
Depending on the data strategy of one organization, one cost-effective approach to process mining could be to leverage cloud computing resources. Cloud platforms, such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP), provide scalable and flexible infrastructure options.
In the era of Industry 4.0 , linking data from MES (Manufacturing Execution System) with that from ERP, CRM and PLM systems plays an important role in creating integrated monitoring and control of business processes.
While a data analyst isn’t expected to know more nuanced skills like deep learning or NLP, a data analyst should know basic data science, machine learning algorithms, automation, and datamining as additional techniques to help further analytics. Cloud Services: Google Cloud Platform, AWS, Azure.
Companies use Business Intelligence (BI), Data Science , and Process Mining to leverage data for better decision-making, improve operational efficiency, and gain a competitive edge. Process Mining offers process transparency, compliance insights, and process optimization. Summary – What value can you expect?
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content