Remove Blog Remove Data Lakes Remove SQL
article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business?

article thumbnail

CI/CD for Data Pipelines: A Game-Changer with AnalyticsCreator

Data Science Blog

It offers full BI-Stack Automation, from source to data warehouse through to frontend. It supports a holistic data model, allowing for rapid prototyping of various models. It also supports a wide range of data warehouses, analytical databases, data lakes, frontends, and pipelines/ETL. pipelines, Azure Data Bricks.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock

AWS Machine Learning Blog

Managing and retrieving the right information can be complex, especially for data analysts working with large data lakes and complex SQL queries. This post highlights how Twilio enabled natural language-driven data exploration of business intelligence (BI) data with RAG and Amazon Bedrock.

SQL 118
article thumbnail

Integrating AWS Data Lake and RDS MS SQL: A Guide to Writing and Retrieving Data Securely

Dataversity

Writing data to an AWS data lake and retrieving it to populate an AWS RDS MS SQL database involves several AWS services and a sequence of steps for data transfer and transformation. This process leverages AWS S3 for the data lake storage, AWS Glue for ETL operations, and AWS Lambda for orchestration.

article thumbnail

Generate financial industry-specific insights using generative AI and in-context fine-tuning

AWS Machine Learning Blog

In this blog post, we demonstrate prompt engineering techniques to generate accurate and relevant analysis of tabular data using industry-specific language. This is done by providing large language models (LLMs) in-context sample data with features and labels in the prompt.

SQL 102
article thumbnail

CI/CD für Datenpipelines – Ein Game-Changer mit AnalyticsCreator

Data Science Blog

Automatisierung: Erstellt SQL-Code, DACPAC-Dateien, SSIS-Pakete, Data Factory-ARM-Vorlagen und XMLA-Dateien. Vielfältige Unterstützung: Kompatibel mit verschiedenen Datenbankmanagementsystemen wie MS SQL Server und Azure Synapse Analytics. Data Lakes: Unterstützt MS Azure Blob Storage.

Azure 130
article thumbnail

Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources

AWS Machine Learning Blog

Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. Today, generative AI can enable people without SQL knowledge. This generative AI task is called text-to-SQL, which generates SQL queries from natural language processing (NLP) and converts text into semantically correct SQL.

SQL 130