This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
It was only a few years ago that BI and data experts excitedly claimed that petabytes of unstructured data could be brought under control with data pipelines and orderly, efficient data warehouses. But as big data continued to grow and the amount of stored information increased every […].
The survey asked companies how they used two overlapping types of tools to deploy analytical models: Data operations (DataOps) tools, which focus on creating a manageable, maintainable, automated flow of quality-assured data. If deployment goes wrong, DataOps/MLOps can even help solve the problem. Survey Questions.
The data universe is expected to grow exponentially with data rapidly propagating on-premises and across clouds, applications and locations with compromised quality. This situation will exacerbate datasilos, increase pressure to manage cloud costs efficiently and complicate governance of AI and data workloads.
Master data management (MDM) MDM tools keep an organization’s master data—such as customer, product or supplier information—consistent and up-to-date across systems and departments, preventing datasilos and providing a unified view of critical data entities.
So feckless buyers may resort to buying separate data catalogs for use cases like…. Data governance. For example, the researching buyer may seek a catalog that scores 6 for governance, 10 for self-service, 4 for cloud data migration, and 2 for DataOps (let’s call this a {6, 10, 4, 2} profile). Self-service.
Companies must adapt quickly to changing demands, and lean data management empowers them by enabling faster decisions, seamless collaboration, and improved scalability. This blog explores why lean data management is essential for agile organisations, its principles, and how to implement it effectively.
Enterprise data analytics integrates data, business, and analytics disciplines, including: Data management. Data engineering. DataOps. … In the past, businesses would collect data, run analytics, and extract insights, which would inform strategy and decision-making. Subscribe to Alation's Blog.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content