Remove Blog Remove Deep Learning Remove Supervised Learning
article thumbnail

Understanding Autoencoders in Deep Learning

Pickl AI

Summary: Autoencoders are powerful neural networks used for deep learning. Their applications include dimensionality reduction, feature learning, noise reduction, and generative modelling. In this blog, we will explore what autoencoders are, how they work, their various types, and real-world applications. Let’s dive in!

article thumbnail

Brain MRI Segmentation with 0.95 Dice score

Analytics Vidhya

Introduction In this blog, we will try to solve a famously discussed task of Brain MRI segmentation. Where our task will be to take brain MR images as input and utilize them with deep learning for automatic brain segmentation matured to a level […]. This article was published as a part of the Data Science Blogathon.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Generative vs Discriminative AI: Understanding the 5 Key Differences

Data Science Dojo

In this blog, we will explore the details of both approaches and navigate through their differences. A visual representation of discriminative AI – Source: Analytics Vidhya Discriminative modeling, often linked with supervised learning, works on categorizing existing data. What is Generative AI?

article thumbnail

How to tackle lack of data: an overview on transfer learning

Data Science Blog

1, Data is the new oil, but labeled data might be closer to it Even though we have been in the 3rd AI boom and machine learning is showing concrete effectiveness at a commercial level, after the first two AI booms we are facing a problem: lack of labeled data or data themselves. That is, is giving supervision to adjust via.

article thumbnail

AI is just a bad student.

Towards AI

An analogy to explain how deep learning works… This member-only story is on us. Originally published on louisbouchard.ai, read it 2 days before on my blog! link] When we talk about artificial intelligence, or AI, we tend to mean deep learning. Upgrade to access all of Medium.

article thumbnail

AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the difference?

IBM Journey to AI blog

While artificial intelligence (AI), machine learning (ML), deep learning and neural networks are related technologies, the terms are often used interchangeably, which frequently leads to confusion about their differences. This blog post will clarify some of the ambiguity. Machine learning is a subset of AI.

article thumbnail

A Comprehensive Guide on Deep Learning Engineers

Pickl AI

Summary : Deep Learning engineers specialise in designing, developing, and implementing neural networks to solve complex problems. Introduction Deep Learning engineers are specialised professionals who design, develop, and implement Deep Learning models and algorithms.