This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In this blog, we will discuss exploratory data analysis, also known as EDA, and why it is important. EDA is an iterative process of conglomerative activities which include data cleaning, manipulation and visualization. We will also be sharing code snippets so you can try out different analysis techniques yourself.
Exploratory Data Analysis (EDA) EDA is a crucial step where Data Scientists visually explore and analyze the data to identify patterns, trends, and potential correlations. Statistical Analysis: Hypothesistesting, probability, regression analysis, etc. Data Visualization: Matplotlib, Seaborn, Tableau, etc.
In Inferential Statistics, you can learn P-Value , T-Value , HypothesisTesting , and A/B Testing , which will help you to understand your data in the form of mathematics. For Data Analysis you can focus on such topics as Feature Engineering , Data Wrangling , and EDA which is also known as Exploratory Data Analysis.
Exploratory data analysis The purpose of having an EDA layer is to find out any obvious error or outlier in the data. are captured and compared by formulating a hypothesistest to conclude with statistical significance. In this layer, we need to set up a set of visualisations to monitor statistical parameters from the data.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content