Remove Business Intelligence Remove Data Governance Remove Data Observability
article thumbnail

Alation 2022.2: Open Data Quality Initiative and Enhanced Data Governance

Alation

generally available on May 24, Alation introduces the Open Data Quality Initiative for the modern data stack, giving customers the freedom to choose the data quality vendor that’s best for them with the added confidence that those tools will integrate seamlessly with Alation’s Data Catalog and Data Governance application.

article thumbnail

How the right data and AI foundation can empower a successful ESG strategy

IBM Journey to AI blog

A well-designed data architecture should support business intelligence and analysis, automation, and AI—all of which can help organizations to quickly seize market opportunities, build customer value, drive major efficiencies, and respond to risks such as supply chain disruptions.

AI 103
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data integrity vs. data quality: Is there a difference?

IBM Journey to AI blog

This is the practice of creating, updating and consistently enforcing the processes, rules and standards that prevent errors, data loss, data corruption, mishandling of sensitive or regulated data, and data breaches.

article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

And because data assets within the catalog have quality scores and social recommendations, Alex has greater trust and confidence in the data she’s using for her decision-making recommendations. This is especially helpful when handling massive amounts of big data. Protected and compliant data.

article thumbnail

Maximize the Power of dbt and Snowflake to Achieve Efficient and Scalable Data Vault Solutions

phData

The implementation of a data vault architecture requires the integration of multiple technologies to effectively support the design principles and meet the organization’s requirements. Having model-level data validations along with implementing a data observability framework helps to address the data vault’s data quality challenges.

SQL 52
article thumbnail

Data Quality Framework: What It Is, Components, and Implementation

DagsHub

We already know that a data quality framework is basically a set of processes for validating, cleaning, transforming, and monitoring data. Data Governance Data governance is the foundation of any data quality framework. It primarily caters to large organizations with complex data environments.

article thumbnail

Visionary Data Quality Paves the Way to Data Integrity

Precisely

And the desire to leverage those technologies for analytics, machine learning, or business intelligence (BI) has grown exponentially as well. Read our eBook 4 Ways to Measure Data Quality and learn more about the variety of data and metrics that organizations can use to measure data quality.