This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Mastering programming, statistics, Machine Learning, and communication is vital for Data Scientists. A typical Data Science syllabus covers mathematics, programming, Machine Learning, datamining, big data technologies, and visualisation. Data Visualisation Visualisation of data is a critical skill.
Statsmodels Allows users to explore data, estimate statistical models, and perform statistical tests. It is particularly useful for regression analysis and hypothesistesting. Pingouin A library designed for statistical analysis, providing a comprehensive collection of statistical tests.
Summary : This article equips Data Analysts with a solid foundation of key Data Science terms, from A to Z. Introduction In the rapidly evolving field of Data Science, understanding key terminology is crucial for Data Analysts to communicate effectively, collaborate effectively, and drive data-driven projects.
It starts with gathering the business requirements and relevant data. Once the data is acquired, it is maintained by performing datacleaning, data warehousing, data staging, and data architecture. What is the p-value and what does it indicate in the Null Hypothesis? How do you clean the data?
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content