Remove Clean Data Remove Data Modeling Remove Data Pipeline
article thumbnail

Self-Service Analytics for Google Cloud, now with Looker and Tableau

Tableau

Leveraging Looker’s semantic layer will provide Tableau customers with trusted, governed data at every stage of their analytics journey. With its LookML modeling language, Looker provides a unique, modern approach to define governed and reusable data models to build a trusted foundation for analytics.

Tableau 138
article thumbnail

Self-Service Analytics for Google Cloud, now with Looker and Tableau

Tableau

Leveraging Looker’s semantic layer will provide Tableau customers with trusted, governed data at every stage of their analytics journey. With its LookML modeling language, Looker provides a unique, modern approach to define governed and reusable data models to build a trusted foundation for analytics.

Tableau 98
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Manage Unstructured Data in AI and Machine Learning Projects

DagsHub

With proper unstructured data management, you can write validation checks to detect multiple entries of the same data. Continuous learning: In a properly managed unstructured data pipeline, you can use new entries to train a production ML model, keeping the model up-to-date.

article thumbnail

Capital One’s data-centric solutions to banking business challenges

Snorkel AI

To borrow another example from Andrew Ng, improving the quality of data can have a tremendous impact on model performance. This is to say that clean data can better teach our models. Another benefit of clean, informative data is that we may also be able to achieve equivalent model performance with much less data.

article thumbnail

Capital One’s data-centric solutions to banking business challenges

Snorkel AI

To borrow another example from Andrew Ng, improving the quality of data can have a tremendous impact on model performance. This is to say that clean data can better teach our models. Another benefit of clean, informative data is that we may also be able to achieve equivalent model performance with much less data.

article thumbnail

Why Should you Codify your Best Practices in dbt?

phData

Below is a breakdown of the areas where the dbt project evaluator validates your project: Modeling: Direct Join to Source : Models should not reference both a source and another model. Downstream Models Dependent on Source : Downstream models (marts or intermediate) should not directly depend on source nodes.

SQL 52