Remove Clean Data Remove Data Science Remove EDA
article thumbnail

Performing EDA of Netflix Dataset with Plotly

Analytics Vidhya

This article was published as a part of the Data Science Blogathon Image 1In this blog, We are going to talk about some of the advanced and most used charts in Plotly while doing analysis. Table of content Description of Dataset Data Exploration Data Cleaning Data visualization […].

EDA 324
article thumbnail

Mastering Exploratory Data Analysis (EDA): A comprehensive guide

Data Science Dojo

In this blog, we will discuss exploratory data analysis, also known as EDA, and why it is important. EDA is an iterative process of conglomerative activities which include data cleaning, manipulation and visualization. We will also be sharing code snippets so you can try out different analysis techniques yourself.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The ultimate guide to the Machine Learning Model Deployment

Data Science Dojo

For data scrapping a variety of sources, such as online databases, sensor data, or social media. Cleaning data: Once the data has been gathered, it needs to be cleaned. This involves removing any errors or inconsistencies in the data.

article thumbnail

Understanding Data Science and Data Analysis Life Cycle

Pickl AI

Summary: The Data Science and Data Analysis life cycles are systematic processes crucial for uncovering insights from raw data. Quality data is foundational for accurate analysis, ensuring businesses stay competitive in the digital landscape. Understanding their life cycles is critical to unlocking their potential.

article thumbnail

Life of modern-day alchemists: What does a data scientist do?

Dataconomy

Today’s question is, “What does a data scientist do.” ” Step into the realm of data science, where numbers dance like fireflies and patterns emerge from the chaos of information. In this blog post, we’re embarking on a thrilling expedition to demystify the enigmatic role of data scientists.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Summary : This article equips Data Analysts with a solid foundation of key Data Science terms, from A to Z. Introduction In the rapidly evolving field of Data Science, understanding key terminology is crucial for Data Analysts to communicate effectively, collaborate effectively, and drive data-driven projects.

article thumbnail

10 Common Mistakes That Every Data Analyst Make

Pickl AI

Working with inaccurate or poor quality data may result in flawed outcomes. Hence it is essential to review the data and ensure its quality before beginning the analysis process. Ignoring Data Cleaning Data cleansing is an important step to correct errors and removes duplication of data.