Remove Cloud Computing Remove Data Warehouse Remove ETL
article thumbnail

ETL Pipeline with Google DataFlow and Apache Beam

Analytics Vidhya

Introduction Processing large amounts of raw data from various sources requires appropriate tools and solutions for effective data integration. Building an ETL pipeline using Apache […]. The post ETL Pipeline with Google DataFlow and Apache Beam appeared first on Analytics Vidhya.

ETL 383
article thumbnail

Crafting Serverless ETL Pipeline Using AWS Glue and PySpark

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Overview ETL (Extract, Transform, and Load) is a very common technique in data engineering. It involves extracting the operational data from various sources, transforming it into a format suitable for business needs, and loading it into data storage systems.

ETL 306
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AWS Glue: Simplifying ETL Data Processing

Analytics Vidhya

Source: [link] Introduction If you are familiar with databases, or data warehouses, you have probably heard the term “ETL.” As the amount of data at organizations grow, making use of that data in analytics to derive business insights grows as well. For the […].

ETL 218
article thumbnail

Why using Infrastructure as Code for developing Cloud-based Data Warehouse Systems?

Data Science Blog

In the contemporary age of Big Data, Data Warehouse Systems and Data Science Analytics Infrastructures have become an essential component for organizations to store, analyze, and make data-driven decisions. So why using IaC for Cloud Data Infrastructures?

article thumbnail

Unlock the True Potential of Your Data with ETL and ELT Pipeline

Analytics Vidhya

Introduction This article will explain the difference between ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) when data transformation occurs. In ETL, data is extracted from multiple locations to meet the requirements of the target data file and then placed into the file.

ETL 298
article thumbnail

Most Frequently Asked Azure Data Factory Interview Questions

Analytics Vidhya

Introduction Azure data factory (ADF) is a cloud-based data ingestion and ETL (Extract, Transform, Load) tool. The data-driven workflow in ADF orchestrates and automates data movement and data transformation.

Azure 283
article thumbnail

Data Warehouse vs. Data Lake

Precisely

As cloud computing platforms make it possible to perform advanced analytics on ever larger and more diverse data sets, new and innovative approaches have emerged for storing, preprocessing, and analyzing information. In this article, we’ll focus on a data lake vs. data warehouse.