Remove Cloud Data Remove Data Engineering Remove SQL
article thumbnail

Cloud Data Science 7

Data Science 101

Welcome to Cloud Data Science 7. Announcements around an exciting new open-source deep learning library, a new data challenge and more. Amazon Personalize can now use 10x more item attributes Personalize, which is a customizable recommendation engine, can now use 50 attributes instead of just 5. Training and Courses.

article thumbnail

Why using Infrastructure as Code for developing Cloud-based Data Warehouse Systems?

Data Science Blog

By automating the provisioning and management of cloud resources through code, IaC brings a host of advantages to the development and maintenance of Data Warehouse Systems in the cloud. So why using IaC for Cloud Data Infrastructures? appeared first on Data Science Blog.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Conventional ML development cycles take weeks to many months and requires sparse data science understanding and ML development skills. Business analysts’ ideas to use ML models often sit in prolonged backlogs because of data engineering and data science team’s bandwidth and data preparation activities.

article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

These experiences facilitate professionals from ingesting data from different sources into a unified environment and pipelining the ingestion, transformation, and processing of data to developing predictive models and analyzing the data by visualization in interactive BI reports. In the menu bar on the left, select Workspaces.

Power BI 195
article thumbnail

Snowflake Snowpark: cloud SQL and Python ML pipelines

Snorkel AI

[link] Ahmad Khan, head of artificial intelligence and machine learning strategy at Snowflake gave a presentation entitled “Scalable SQL + Python ML Pipelines in the Cloud” about his company’s Snowpark service at Snorkel AI’s Future of Data-Centric AI virtual conference in August 2022. Welcome everybody.

SQL 52
article thumbnail

Snowflake Snowpark: cloud SQL and Python ML pipelines

Snorkel AI

[link] Ahmad Khan, head of artificial intelligence and machine learning strategy at Snowflake gave a presentation entitled “Scalable SQL + Python ML Pipelines in the Cloud” about his company’s Snowpark service at Snorkel AI’s Future of Data-Centric AI virtual conference in August 2022. Welcome everybody.

SQL 52
article thumbnail

A Guide to Choose the Best Data Science Bootcamp

Data Science Dojo

Big Data Technologies : Handling and processing large datasets using tools like Hadoop, Spark, and cloud platforms such as AWS and Google Cloud. Data Processing and Analysis : Techniques for data cleaning, manipulation, and analysis using libraries such as Pandas and Numpy in Python.