Remove Clustering Remove Computer Science Remove System Architecture
article thumbnail

Accelerate pre-training of Mistral’s Mathstral model with highly resilient clusters on Amazon SageMaker HyperPod

AWS Machine Learning Blog

It is important to consider the massive amount of compute often required to train these models. When using compute clusters of massive size, a single failure can often throw a training job off course and may require multiple hours of discovery and remediation from customers.

article thumbnail

Customize DeepSeek-R1 671b model using Amazon SageMaker HyperPod recipes – Part 2

AWS Machine Learning Blog

The following diagram illustrates the solution architecture for training using SageMaker HyperPod. With HyperPod, users can begin the process by connecting to the login/head node of the Slurm cluster. Alternatively, you can also use AWS Systems Manager and run a command such as the following to start the session.

article thumbnail

Reduce ML training costs with Amazon SageMaker HyperPod

AWS Machine Learning Blog

As cluster sizes grow, the likelihood of failure increases due to the number of hardware components involved. Each hardware failure can result in wasted GPU hours and requires valuable engineering time to identify and resolve the issue, making the system prone to downtime that can disrupt progress and delay completion.

ML 120