article thumbnail

Introduction to K-Fold Cross-Validation in R

Analytics Vidhya

The post Introduction to K-Fold Cross-Validation in R appeared first on Analytics Vidhya. ArticleVideo Book This article was published as a part of the Data Science Blogathon. Photo by Myriam Jessier on Unsplash Prerequisites: Basic R programming.

article thumbnail

Identification of Hazardous Areas for Priority Landmine Clearance: AI for Humanitarian Mine Action

ML @ CMU

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool for landmine contamination to identify hazardous clusters under geographic and budget constraints, experimentally reducing false alarms and clearance time by half. Validation results in Colombia. RELand is our interpretable IRM model.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Top 8 Machine Learning Algorithms

Data Science Dojo

Technical Approaches: Several techniques can be used to assess row importance, each with its own advantages and limitations: Leave-One-Out (LOO) Cross-Validation: This method retrains the model leaving out each data point one at a time and observes the change in model performance (e.g., accuracy). shirt, pants). shirt, pants).

article thumbnail

GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations

Flipboard

Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed (..)

article thumbnail

DBSCAN Demystified: Understanding How This Algorithm Works

Mlearning.ai

No Problem: Using DBSCAN for Outlier Detection and Data Cleaning Photo by Mel Poole on Unsplash DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. Our goal is to cluster these points into groups that are densely packed together. We stop when we cannot assign more core points to the first cluster.

article thumbnail

Mastering ML Model Performance: Best Practices for Optimal Results

Iguazio

Clustering Metrics Clustering is an unsupervised learning technique where data points are grouped into clusters based on their similarities or proximity. Evaluation metrics include: Silhouette Coefficient - Measures the compactness and separation of clusters.

ML 52
article thumbnail

Types of Statistical Models in R for Data Scientists

Pickl AI

This could be linear regression, logistic regression, clustering , time series analysis , etc. Model Evaluation: Assess the quality of the midel by using different evaluation metrics, cross validation and techniques that prevent overfitting. This may involve finding values that best represent to observed data.