Remove Clustering Remove Cross Validation Remove Hypothesis Testing
article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Here are some key areas often assessed: Programming Proficiency Candidates are often tested on their proficiency in languages such as Python, R, and SQL, with a focus on data manipulation, analysis, and visualization. Clustering algorithms such as K-means and hierarchical clustering are examples of unsupervised learning techniques.

article thumbnail

Statistical Modeling: Types and Components

Pickl AI

Hypothesis Testing : Statistical Models help test hypotheses by analysing relationships between variables. These models help in hypothesis testing and determining the relationships between variables. Bayesian models and hypothesis tests (like t-tests or chi-square tests) are examples of inferential models.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Types of Statistical Models in R for Data Scientists

Pickl AI

This could be linear regression, logistic regression, clustering , time series analysis , etc. Model Evaluation: Assess the quality of the midel by using different evaluation metrics, cross validation and techniques that prevent overfitting. This may involve finding values that best represent to observed data.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Some of the most notable technologies include: Hadoop An open-source framework that allows for distributed storage and processing of large datasets across clusters of computers. Statistical Analysis Introducing statistical methods and techniques for analysing data, including hypothesis testing, regression analysis, and descriptive statistics.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities. Cross-Validation: A model evaluation technique that assesses how well a model will generalise to an independent dataset.

article thumbnail

Top 50+ Data Analyst Interview Questions & Answers

Pickl AI

Techniques such as cross-validation, regularisation , and feature selection can prevent overfitting. Then, I would use clustering techniques such as k-means or hierarchical clustering to group customers based on similarities in their purchasing behaviour. In my previous role, we had a project with a tight deadline.

article thumbnail

[Updated] 100+ Top Data Science Interview Questions

Mlearning.ai

There are majorly two categories of sampling techniques based on the usage of statistics, they are: Probability Sampling techniques: Clustered sampling, Simple random sampling, and Stratified sampling. What is the p-value and what does it indicate in the Null Hypothesis? What is Cross-Validation?