Remove Clustering Remove Cross Validation Remove ML
article thumbnail

Identification of Hazardous Areas for Priority Landmine Clearance: AI for Humanitarian Mine Action

ML @ CMU

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool for landmine contamination to identify hazardous clusters under geographic and budget constraints, experimentally reducing false alarms and clearance time by half. Validation results in Colombia. RELand is our interpretable IRM model.

article thumbnail

MLOps: A complete guide for building, deploying, and managing machine learning models

Data Science Dojo

ML models have grown significantly in recent years, and businesses increasingly rely on them to automate and optimize their operations. However, managing ML models can be challenging, especially as models become more complex and require more resources to train and deploy. What is MLOps?

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Mastering ML Model Performance: Best Practices for Optimal Results

Iguazio

Evaluating ML model performance is essential for ensuring the reliability, quality, accuracy and effectiveness of your ML models. In this blog post, we dive into all aspects of ML model performance: which metrics to use to measure performance, best practices that can help and where MLOps fits in. Why Evaluate Model Performance?

ML 52
article thumbnail

How Amazon trains sequential ensemble models at scale with Amazon SageMaker Pipelines

AWS Machine Learning Blog

Amazon SageMaker Pipelines includes features that allow you to streamline and automate machine learning (ML) workflows. Ensemble models are becoming popular within the ML communities. Pipelines can quickly be used to create and end-to-end ML pipeline for ensemble models. Upon observation, some of the topics are wide and general.

ML 79
article thumbnail

Pre-training genomic language models using AWS HealthOmics and Amazon SageMaker

AWS Machine Learning Blog

Here, we use AWS HealthOmics storage as a convenient and cost-effective omic data store and Amazon Sagemaker as a fully managed machine learning (ML) service to train and deploy the model. With SageMaker Training, a managed batch ML compute service, users can efficiently train models without having to manage the underlying infrastructure.

AWS 120
article thumbnail

Sales Prediction| Using Time Series| End-to-End Understanding| Part -2

Towards AI

Please refer to Part 1– to understand what is Sales Prediction/Forecasting, the Basic concepts of Time series modeling, and EDA I’m working on Part 3 where I will be implementing Deep Learning and Part 4 where I will be implementing a supervised ML model.

article thumbnail

Must-Have Skills for a Machine Learning Engineer

Pickl AI

Introduction Machine Learning ( ML ) is revolutionising industries, from healthcare and finance to retail and manufacturing. As businesses increasingly rely on ML to gain insights and improve decision-making, the demand for skilled professionals surges. This growth signifies Python’s increasing role in ML and related fields.