Remove Clustering Remove Data Analysis Remove K-nearest Neighbors
article thumbnail

Problem-solving tools offered by digital technology

Data Science Dojo

Zheng’s “Guide to Data Structures and Algorithms” Parts 1 and Part 2 1) Big O Notation 2) Search 3) Sort 3)–i)–Quicksort 3)–ii–Mergesort 4) Stack 5) Queue 6) Array 7) Hash Table 8) Graph 9) Tree (e.g.,

article thumbnail

Top 8 Machine Learning Algorithms

Data Science Dojo

Support Vector Machines (SVM): This algorithm finds a hyperplane that best separates data points of different classes in high-dimensional space. Decision Trees: These work by asking a series of yes/no questions based on data features to classify data points. Points far away from others are considered anomalies. shirt, pants).

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Credit Card Fraud Detection Using Spectral Clustering

PyImageSearch

Home Table of Contents Credit Card Fraud Detection Using Spectral Clustering Understanding Anomaly Detection: Concepts, Types and Algorithms What Is Anomaly Detection? By leveraging anomaly detection, we can uncover hidden irregularities in transaction data that may indicate fraudulent behavior.

article thumbnail

From Pixels to Places: Harnessing Geospatial Data with Machine Learning.

Towards AI

A sector that is currently being influenced by machine learning is the geospatial sector, through well-crafted algorithms that improve data analysis through mapping techniques such as image classification, object detection, spatial clustering, and predictive modeling, revolutionizing how we understand and interact with geographic information.

article thumbnail

A Guide to Unsupervised Machine Learning Models | Types | Applications

Pickl AI

Therefore, it mainly deals with unlabelled data. The ability of unsupervised learning to discover similarities and differences in data makes it ideal for conducting exploratory data analysis. There are different kinds of unsupervised learning algorithms, including clustering, anomaly detection, neural networks, etc.

article thumbnail

Five machine learning types to know

IBM Journey to AI blog

Classification algorithms —predict categorical output variables (e.g., “junk” or “not junk”) by labeling pieces of input data. Classification algorithms include logistic regression, k-nearest neighbors and support vector machines (SVMs), among others.

article thumbnail

Healthcare revolution: Vector databases for patient similarity search and precision diagnosis

Data Science Dojo

Cohort analysis in research Grouping patients with similar characteristics facilitates targeted research efforts, leading to faster breakthroughs in disease understanding and treatment development. Exploring Disease Mechanisms : Vector databases facilitate the identification of patient clusters that share similar disease progression patterns.

Database 361