Remove Clustering Remove Data Pipeline Remove DataOps
article thumbnail

The Shift from Models to Compound AI Systems

BAIR

DataOps: Because many AI systems involve data serving components like vector DBs, and their behavior depends on the quality of data served, any focus on operations for these systems should additionally span data pipelines. Operation: LLMOps and DataOps. for GPT-4 with 5-shot prompting or 83.7%

AI 145
article thumbnail

How HR Tech Company Sense Scaled their ML Operations using Iguazio

Iguazio

Iguazio is an essential component in Sense’s MLOps and DataOps architecture, acting as the ML training and serving component of the pipeline. With Iguazio, Sense’s ML team members can pull data, analyze it, train and run experiments, making the process automated, scalable and cost-effective. Enabling quick experimentation.

ML 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Sense Uses Iguazio as a Key Component of Their ML Stack

Iguazio

Iguazio is an essential component in Sense’s MLOps and DataOps architecture, acting as the ML training and serving component of the pipeline. With Iguazio, Sense’s data professionals can pull data, analyze it, train and run experiments. With Iguazio, data scientists and ML engineers start having superpowers.”

ML 52
article thumbnail

The Shift from Models to Compound AI Systems

BAIR

DataOps: Because many AI systems involve data serving components like vector DBs, and their behavior depends on the quality of data served, any focus on operations for these systems should additionally span data pipelines. Operation: LLMOps and DataOps. for GPT-4 with 5-shot prompting or 83.7%

AI 40