Remove Clustering Remove Data Preparation Remove ML
article thumbnail

How Booking.com modernized its ML experimentation framework with Amazon SageMaker

AWS Machine Learning Blog

Sharing in-house resources with other internal teams, the Ranking team machine learning (ML) scientists often encountered long wait times to access resources for model training and experimentation – challenging their ability to rapidly experiment and innovate. If it shows online improvement, it can be deployed to all the users.

ML 138
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. SageMaker Studio is the first fully integrated development environment (IDE) for ML. Here we use RedshiftDatasetDefinition to retrieve the dataset from the Redshift cluster.

ML 123
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

This year, generative AI and machine learning (ML) will again be in focus, with exciting keynote announcements and a variety of sessions showcasing insights from AWS experts, customer stories, and hands-on experiences with AWS services. Visit the session catalog to learn about all our generative AI and ML sessions.

AWS 108
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Machine learning (ML) helps organizations to increase revenue, drive business growth, and reduce costs by optimizing core business functions such as supply and demand forecasting, customer churn prediction, credit risk scoring, pricing, predicting late shipments, and many others. A provisioned or serverless Amazon Redshift data warehouse.

article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning Blog

With the introduction of EMR Serverless support for Apache Livy endpoints , SageMaker Studio users can now seamlessly integrate their Jupyter notebooks running sparkmagic kernels with the powerful data processing capabilities of EMR Serverless. This same interface is also used for provisioning EMR clusters.

AWS 125
article thumbnail

Accelerate time to insight with Amazon SageMaker Data Wrangler and the power of Apache Hive

AWS Machine Learning Blog

Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes in Amazon SageMaker Studio. Starting today, you can connect to Amazon EMR Hive as a big data query engine to bring in large datasets for ML.

article thumbnail

6 AI tools revolutionizing data analysis: Unleashing the best in business

Data Science Dojo

Scikit-learn can be used for a variety of data analysis tasks, including: Classification Regression Clustering Dimensionality reduction Feature selection Leveraging Scikit-learn in data analysis projects Scikit-learn can be used in a variety of data analysis projects.