Remove Clustering Remove Data Wrangling Remove Support Vector Machines
article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Machine Learning Algorithms Candidates should demonstrate proficiency in a variety of Machine Learning algorithms, including linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks. How do you handle missing values in a dataset?

article thumbnail

Best Resources for Kids to learn Data Science with Python

Pickl AI

Explore Machine Learning with Python: Become familiar with prominent Python artificial intelligence libraries such as sci-kit-learn and TensorFlow. Begin by employing algorithms for supervised learning such as linear regression , logistic regression, decision trees, and support vector machines.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Big Data Technologies and Tools A comprehensive syllabus should introduce students to the key technologies and tools used in Big Data analytics. Some of the most notable technologies include: Hadoop An open-source framework that allows for distributed storage and processing of large datasets across clusters of computers.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

C Classification: A supervised Machine Learning task that assigns data points to predefined categories or classes based on their characteristics. Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities.