Remove Clustering Remove Definition Remove K-nearest Neighbors
article thumbnail

Data mining

Dataconomy

Clustering Clustering groups similar data points based on their attributes. One common example is k-means clustering, which segments data into distinct groups for analysis. Decision trees and K-nearest neighbors (KNN) Both decision trees and KNN play vital roles in classification and prediction.

article thumbnail

Retrieval-Augmented Generation with LangChain, Amazon SageMaker JumpStart, and MongoDB Atlas semantic search

Flipboard

Set up a MongoDB cluster To create a free tier MongoDB Atlas cluster, follow the instructions in Create a Cluster. MongoDB Atlas Vector Search uses a technique called k-nearest neighbors (k-NN) to search for similar vectors. k-NN works by finding the k most similar vectors to a given vector.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

An Overview of Extreme Multilabel Classification (XML/XMLC)

Towards AI

The prediction is then done using a k-nearest neighbor method within the embedding space. The feature space reduction is performed by aggregating clusters of features of balanced size. This clustering is usually performed using hierarchical clustering.

article thumbnail

How IDIADA optimized its intelligent chatbot with Amazon Bedrock

AWS Machine Learning Blog

Instead of relying on predefined, rigid definitions, our approach follows the principle of understanding a set. Its important to note that the learned definitions might differ from common expectations. Instead of relying solely on compressed definitions, we provide the model with a quasi-definition by extension.

article thumbnail

Fundamentals of Recommendation Systems

PyImageSearch

K-Nearest Neighbor K-nearest neighbor (KNN) ( Figure 8 ) is an algorithm that can be used to find the closest points for a data point based on a distance measure (e.g., Figure 8: K-nearest neighbor algorithm (source: Towards Data Science ). Several clustering algorithms (e.g.,

article thumbnail

Coactive AI’s CEO: quality beats quantity for data selection

Snorkel AI

Now the key insight that we had in solving this is that we noticed that unseen concepts are actually well clustered by pre-trained deep learning models or foundation models. And effectively in the latent space, they form kind of tight clusters for these unseen concepts that are very well-connected components. of the unlabeled data.

article thumbnail

Coactive AI’s CEO: quality beats quantity for data selection

Snorkel AI

Now the key insight that we had in solving this is that we noticed that unseen concepts are actually well clustered by pre-trained deep learning models or foundation models. And effectively in the latent space, they form kind of tight clusters for these unseen concepts that are very well-connected components. of the unlabeled data.