Remove Clustering Remove Events Remove ML
article thumbnail

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

AWS Machine Learning Blog

At the time, I knew little about AI or machine learning (ML). But AWS DeepRacer instantly captured my interest with its promise that even inexperienced developers could get involved in AI and ML. Panic set in as we realized we would be competing on stage in front of thousands of people while knowing little about ML.

AWS 111
article thumbnail

Identification of Hazardous Areas for Priority Landmine Clearance: AI for Humanitarian Mine Action

ML @ CMU

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool for landmine contamination to identify hazardous clusters under geographic and budget constraints, experimentally reducing false alarms and clearance time by half. RELand consistently outperforms the benchmark models on all relevant metrics.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. Third, we’ll explore the robust infrastructure services from AWS powering AI innovation, featuring Amazon SageMaker , AWS Trainium , and AWS Inferentia under AI/ML, as well as Compute topics.

AWS 115
article thumbnail

Node problem detection and recovery for AWS Neuron nodes within Amazon EKS clusters

AWS Machine Learning Blog

By accelerating the speed of issue detection and remediation, it increases the reliability of your ML training and reduces the wasted time and cost due to hardware failure. Additionally, the node recovery agent will publish Amazon CloudWatch metrics for users to monitor and alert on these events. install.sh and public.ecr.aws. .

article thumbnail

An Important Guide To Unsupervised Machine Learning

Smart Data Collective

Unsupervised ML: The Basics. Unlike supervised ML, we do not manage the unsupervised model. Unsupervised ML uses algorithms that draw conclusions on unlabeled datasets. As a result, unsupervised ML algorithms are more elaborate than supervised ones, since we have little to no information or the predicted outcomes.

article thumbnail

Create Audience Segments Using K-Means Clustering, Churn Prevention with Reinforcement Learning…

ODSC - Open Data Science

Learn more about how you can volunteer for either the in-person or virtual team and get a free ticket to the event. Volunteer for ODSC East 2023 ODSC volunteers are an integral part of the success of each ODSC conference and a perfect extension of our core team and ambassadors to our community!

article thumbnail

Unlock ML insights using the Amazon SageMaker Feature Store Feature Processor

AWS Machine Learning Blog

Amazon SageMaker Feature Store provides an end-to-end solution to automate feature engineering for machine learning (ML). For many ML use cases, raw data like log files, sensor readings, or transaction records need to be transformed into meaningful features that are optimized for model training. SageMaker Studio set up.

ML 131