Remove Cross Validation Remove Data Mining Remove Python
article thumbnail

Machine Learning Models: 4 Ways to Test them in Production

Data Science Dojo

The torchvision package includes datasets and transformations for testing and validating computer vision models. Scikit-learn Scikit-learn is a versatile Python library that offers various algorithms and model evaluation metrics, including cross-validation and grid search for hyperparameter tuning.

article thumbnail

Cross-Validation Techniques for Machine Learning: A Guide to Improve Model Performance

Mlearning.ai

We use some of the data for training and some for testing (we will not use test data for training). How we do this is the subject of the concept of cross-validation. I will develop a model using the training data (blue) and apply it to my test data (red). Diagram of k-fold cross-validation.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Artificial Intelligence Using Python: A Comprehensive Guide

Pickl AI

Summary: This guide explores Artificial Intelligence Using Python, from essential libraries like NumPy and Pandas to advanced techniques in machine learning and deep learning. Python’s simplicity, versatility, and extensive library support make it the go-to language for AI development.

article thumbnail

List of Python Libraries for Data Science

Pickl AI

Introduction One of the most widely used and highly popular programming languages in the technological world is Python. Significantly, despite being user-friendly and easy to learn, one of Python’s many advantages is that it has large collection of libraries. What is a Python Library? What version of Python are you using?

article thumbnail

DBSCAN Demystified: Understanding How This Algorithm Works

Mlearning.ai

No Problem: Using DBSCAN for Outlier Detection and Data Cleaning Photo by Mel Poole on Unsplash DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. DBSCAN works by partitioning the data into dense regions of points that are separated by less dense areas. Image by the author.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Summary : This article equips Data Analysts with a solid foundation of key Data Science terms, from A to Z. Introduction In the rapidly evolving field of Data Science, understanding key terminology is crucial for Data Analysts to communicate effectively, collaborate effectively, and drive data-driven projects.

article thumbnail

[Updated] 100+ Top Data Science Interview Questions

Mlearning.ai

Once the data is acquired, it is maintained by performing data cleaning, data warehousing, data staging, and data architecture. Data processing does the task of exploring the data, mining it, and analyzing it which can be finally used to generate the summary of the insights extracted from the data.