Remove Cross Validation Remove Data Wrangling Remove Deep Learning
article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Machine Learning Algorithms Candidates should demonstrate proficiency in a variety of Machine Learning algorithms, including linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks. What is cross-validation, and why is it used in Machine Learning?

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Data Cleaning and Transformation Techniques for preprocessing data to ensure quality and consistency, including handling missing values, outliers, and data type conversions. Students should learn about data wrangling and the importance of data quality.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities. Cross-Validation: A model evaluation technique that assesses how well a model will generalise to an independent dataset.