This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Public Datasets: Utilising publicly available datasets from repositories like Kaggle or government databases. Exploratory Data Analysis (EDA) EDA is a crucial preliminary step in understanding the characteristics of the dataset. Web Scraping : Extracting data from websites and online sources.
Data Extraction, Preprocessing & EDA & Machine Learning Model development Data collection : Automatically download the stock historical prices data in CSV format and save it to the AWS S3 bucket. Data Extraction, Preprocessing & EDA : Extract & Pre-process the data using Python and perform basic Exploratory Data Analysis.
databases, APIs, CSV files). Exploratory Data Analysis (EDA): Conduct EDA to identify trends, seasonal patterns, and correlations within the dataset. Split the Data: Divide your dataset into training, validation, and testing subsets to ensure robust evaluation.
Key Components of Data Science Data Science consists of several key components that work together to extract meaningful insights from data: Data Collection: This involves gathering relevant data from various sources, such as databases, APIs, and web scraping. Data Cleaning: Raw data often contains errors, inconsistencies, and missing values.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content