Remove Cross Validation Remove Decision Trees Remove Supervised Learning
article thumbnail

Artificial Intelligence Using Python: A Comprehensive Guide

Pickl AI

Machine Learning algorithms are trained on large amounts of data, and they can then use that data to make predictions or decisions about new data. There are three main types of Machine Learning: supervised learning, unsupervised learning, and reinforcement learning.

article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Machine Learning Algorithms Candidates should demonstrate proficiency in a variety of Machine Learning algorithms, including linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks. Differentiate between supervised and unsupervised learning algorithms.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Top 17 trending interview questions for AI Scientists

Data Science Dojo

Let’s dig into some of the most asked interview questions from AI Scientists with best possible answers Core AI Concepts Explain the difference between supervised, unsupervised, and reinforcement learning. The model learns to map input features to output labels.

AI 195
article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities. Cross-Validation: A model evaluation technique that assesses how well a model will generalise to an independent dataset.

article thumbnail

How to Use Machine Learning (ML) for Time Series Forecasting?—?NIX United

Mlearning.ai

The downside of overly time-consuming supervised learning, however, remains. Classic Methods of Time Series Forecasting Multi-Layer Perceptron (MLP) Univariate models can be used to model univariate time series prediction machine learning problems. In its core, lie gradient-boosted decision trees.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Big Data and Machine Learning The intersection of Big Data and Machine Learning is a critical area of focus in a Big Data syllabus. Students should learn how to leverage Machine Learning algorithms to extract insights from large datasets. Students should learn how to train and evaluate models using large datasets.

article thumbnail

Top 50+ Data Analyst Interview Questions & Answers

Pickl AI

Machine learning is a subset of artificial intelligence that enables computers to learn from data and improve over time without being explicitly programmed. Explain the difference between supervised and unsupervised learning. What are the advantages and disadvantages of decision trees ?