Remove Cross Validation Remove Deep Learning Remove EDA
article thumbnail

Artificial Intelligence Using Python: A Comprehensive Guide

Pickl AI

Summary: This guide explores Artificial Intelligence Using Python, from essential libraries like NumPy and Pandas to advanced techniques in machine learning and deep learning. TensorFlow and Keras: TensorFlow is an open-source platform for machine learning.

article thumbnail

Meet the winners of the Kelp Wanted challenge

DrivenData Labs

Model architectures : All four winners created ensembles of deep learning models and relied on some combination of UNet, ConvNext, and SWIN architectures. In the modeling phase, XGBoost predictions serve as features for subsequent deep learning models. Test-time augmentations were used with mixed results.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

What is cross-validation, and why is it used in Machine Learning? Cross-validation is a technique used to assess the performance and generalization ability of Machine Learning models. What is the Central Limit Theorem, and why is it important in statistics?

article thumbnail

Sales Prediction| Using Time Series| End-to-End Understanding| Part -2

Towards AI

This is part 2, and you will learn how to do sales prediction using Time Series. Please refer to Part 1– to understand what is Sales Prediction/Forecasting, the Basic concepts of Time series modeling, and EDA I’m working on Part 3 where I will be implementing Deep Learning and Part 4 where I will be implementing a supervised ML model.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities. Cross-Validation: A model evaluation technique that assesses how well a model will generalise to an independent dataset.

article thumbnail

Large Language Models: A Complete Guide

Heartbeat

It is therefore important to carefully plan and execute data preparation tasks to ensure the best possible performance of the machine learning model. It is also essential to evaluate the quality of the dataset by conducting exploratory data analysis (EDA), which involves analyzing the dataset’s distribution, frequency, and diversity of text.