Remove Cross Validation Remove SQL Remove Support Vector Machines
article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Technical Proficiency Data Science interviews typically evaluate candidates on a myriad of technical skills spanning programming languages, statistical analysis, Machine Learning algorithms, and data manipulation techniques. Examples include linear regression, logistic regression, and support vector machines.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Understanding the differences between SQL and NoSQL databases is crucial for students. Students should learn how to leverage Machine Learning algorithms to extract insights from large datasets. Model Evaluation Techniques for evaluating machine learning models, including cross-validation, confusion matrix, and performance metrics.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

[Updated] 100+ Top Data Science Interview Questions

Mlearning.ai

Another example can be the algorithm of a support vector machine. Hence, we have various classification algorithms in machine learning like logistic regression, support vector machine, decision trees, Naive Bayes classifier, etc. What are Support Vectors in SVM (Support Vector Machine)?

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

Clustering: An unsupervised Machine Learning technique that groups similar data points based on their inherent similarities. Cross-Validation: A model evaluation technique that assesses how well a model will generalise to an independent dataset.

article thumbnail

How to Choose MLOps Tools: In-Depth Guide for 2024

DagsHub

It offers implementations of various machine learning algorithms, including linear and logistic regression , decision trees , random forests , support vector machines , clustering algorithms , and more. There is no licensing cost for Scikit-learn, you can create and use different ML models with Scikit-learn for free.