This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In this blog, we explore how the introduction of SQL Asset Type enhances the metadata enrichment process within the IBM Knowledge Catalog , enhancing data governance and consumption. Understanding Data Fabric and IBM Knowledge Catalog A data fabric is an architectural blueprint that helps transcending traditional datasilos and complexities.
Insurance companies often face challenges with datasilos and inconsistencies among their legacy systems. To address these issues, they need a centralized and integrated data platform that serves as a single source of truth, preferably with strong data governance capabilities.
Align your data strategy to a go-forward architecture, with considerations for existing technology investments, governance and autonomous management built in. Look to AI to help automate tasks such as data onboarding, dataclassification, organization and tagging.
Here are some reasons why having a data governance strategy is crucial: Alignment: A data governance strategy helps align data management activities with organizational goals and objectives, ensuring that data supports business outcomes.
Here are some reasons why having a data governance strategy is crucial: Alignment: A data governance strategy helps align data management activities with organizational goals and objectives, ensuring that data supports business outcomes.
Establishing a Foundation for Data Culture Data governance is going to be the foundation of every data culture. There are many reasons to implement data governance policies, such as auditing and compliance, data protection, monitoring, quality checks, and dataclassification.
Through this unified query capability, you can create comprehensive insights into customer transaction patterns and purchase behavior for active products without the traditional barriers of datasilos or the need to copy data between systems.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content