This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
They must put high-quality data into the hands of users as efficiently as possible. DataOps has emerged as an exciting solution. As the latest iteration in this pursuit of high-quality data sharing, DataOps combines a range of disciplines. It synthesizes all we’ve learned about agile, data quality , and ETL/ELT.
Scalable data pipelines: Seasoned data teams are facing increasing pressure to respond to a growing number of data requests from downstream consumers, which is compounded by the drive for users to have higher data literacy and skills shortage of experienced dataengineers.
Building data pipelines is challenging, and complex requirements (as well as the separation of many sources) leads to a lack of trust. Troubleshooting data issues , for an exploding number of disjointed systems and tools, breaks self-service for data users and creates gaps in visibility for dataOps.
With the “Data Productivity Cloud” launch, Matillion has achieved a balance of simplifying source control, collaboration, and dataops by elevating Git integration to a “first-class citizen” within the framework. In Matillion ETL, the Git integration enables an organization to connect to any Git offering (e.g.,
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content