This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
First, there’s a need for preparing the data, aka dataengineering basics. Machine learning practitioners are often working with data at the beginning and during the full stack of things, so they see a lot of workflow/pipeline development, datawrangling, and data preparation.
Mini-Bootcamp and VIP Pass holders will have access to four live virtual sessions on data science fundamentals. Confirmed sessions include: An Introduction to DataWrangling with SQL with Sheamus McGovern, Software Architect, DataEngineer, and AI expert Programming with Data: Python and Pandas with Daniel Gerlanc, Sr.
Big data analytics is evergreen, and as more companies use big data it only makes sense that practitioners are interested in analyzing data in-house. Lastly, dataengineering is popular as the engineering side of AI is needed to make the most out of data, such as collection, cleaning, extracting, and so on.
You’ll also have the chance to learn about the tradeoffs of building AI from scratch or buying it from a third party at the AI Expo and Demo Hall, where Microsoft, neo4j, HPCC, and many more will be showcasing their products and services.
Skills like effective verbal and written communication will help back up the numbers, while data visualization (specific frameworks in the next section) can help you tell a complete story. DataWrangling: Data Quality, ETL, Databases, Big Data The modern data analyst is expected to be able to source and retrieve their own data for analysis.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content