Remove Data Governance Remove Data Observability Remove Data Warehouse
article thumbnail

Alation 2022.2: Open Data Quality Initiative and Enhanced Data Governance

Alation

generally available on May 24, Alation introduces the Open Data Quality Initiative for the modern data stack, giving customers the freedom to choose the data quality vendor that’s best for them with the added confidence that those tools will integrate seamlessly with Alation’s Data Catalog and Data Governance application.

article thumbnail

Data Trustability: The Bridge Between Data Quality and Data Observability

Dataversity

So, what can you do to ensure your data is up to par and […]. The post Data Trustability: The Bridge Between Data Quality and Data Observability appeared first on DATAVERSITY. You might not even make it out of the starting gate.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Integrity vs. Data Quality: How Are They Different?

Precisely

Data integrity is based on four main pillars: Data integration : Regardless of its original source, on legacy systems, relational databases, or cloud data warehouses, data must be seamlessly integrated in order to gain visibility into all your data in a timely fashion.

article thumbnail

Modern Data Management Essentials: Exploring Data Fabric

Precisely

While data fabric is not a standalone solution, critical capabilities that you can address today to prepare for a data fabric include automated data integration, metadata management, centralized data governance, and self-service access by consumers. Increase metadata maturity.

article thumbnail

Testing and Monitoring Data Pipelines: Part One

Dataversity

Suppose you’re in charge of maintaining a large set of data pipelines from cloud storage or streaming data into a data warehouse. How can you ensure that your data meets expectations after every transformation? That’s where data quality testing comes in.

article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

It uses metadata and data management tools to organize all data assets within your organization. It synthesizes the information across your data ecosystem—from data lakes, data warehouses, and other data repositories—to empower authorized users to search for and access business-ready data for their projects and initiatives.

article thumbnail

Maximize the Power of dbt and Snowflake to Achieve Efficient and Scalable Data Vault Solutions

phData

The implementation of a data vault architecture requires the integration of multiple technologies to effectively support the design principles and meet the organization’s requirements. Data Acquisition: Extracting data from source systems and making it accessible. Implement Data Lineage and Traceability Path: Data Vault 2.0

SQL 52