Remove Data Governance Remove Data Pipeline Remove Information
article thumbnail

7 Ways to Avoid Errors In Your Data Pipeline

Smart Data Collective

A data pipeline is a technical system that automates the flow of data from one source to another. While it has many benefits, an error in the pipeline can cause serious disruptions to your business. Here are some of the best practices for preventing errors in your data pipeline: 1. Monitor Your Data Sources.

article thumbnail

Mastering healthcare data governance with data lineage

IBM Journey to AI blog

The healthcare industry faces arguably the highest stakes when it comes to data governance. For starters, healthcare organizations constantly encounter vast (and ever-increasing) amounts of highly regulated personal data. healthcare, managing the accuracy, quality and integrity of data is the focus of data governance.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Assess Data Quality Readiness for Modern Data Pipelines

Dataversity

The key to being truly data-driven is having access to accurate, complete, and reliable data. In fact, Gartner recently found that organizations believe […] The post How to Assess Data Quality Readiness for Modern Data Pipelines appeared first on DATAVERSITY.

article thumbnail

Building Robust Data Pipelines: 9 Fundamentals and Best Practices to Follow

Alation

But with the sheer amount of data continually increasing, how can a business make sense of it? Robust data pipelines. What is a Data Pipeline? A data pipeline is a series of processing steps that move data from its source to its destination. The answer?

article thumbnail

Why data governance is essential for enterprise AI

IBM Journey to AI blog

Because of this, when we look to manage and govern the deployment of AI models, we must first focus on governing the data that the AI models are trained on. This data governance requires us to understand the origin, sensitivity, and lifecycle of all the data that we use. LLMs are a bit different.

article thumbnail

Gain an AI Advantage with Data Governance and Quality

Precisely

Key Takeaways Data quality ensures your data is accurate, complete, reliable, and up to date – powering AI conclusions that reduce costs and increase revenue and compliance. Data observability continuously monitors data pipelines and alerts you to errors and anomalies. What does “quality” data mean, exactly?

article thumbnail

Choosing Tools for Data Pipeline Test Automation (Part 1)

Dataversity

Those who want to design universal data pipelines and ETL testing tools face a tough challenge because of the vastness and variety of technologies: Each data pipeline platform embodies a unique philosophy, architectural design, and set of operations.