Remove Data Lakes Remove Data Models Remove ML
article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 122
article thumbnail

Unstructured data management and governance using AWS AI/ML and analytics services

Flipboard

Unstructured data is information that doesn’t conform to a predefined schema or isn’t organized according to a preset data model. Text, images, audio, and videos are common examples of unstructured data. Additionally, we show how to use AWS AI/ML services for analyzing unstructured data.

AWS 166
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Using Azure ML to Train a Serengeti Data Model for Animal Identification

ODSC - Open Data Science

Article on Azure ML by Bethany Jepchumba and Josh Ndemenge of Microsoft In this article, I will cover how you can train a model using Notebooks in Azure Machine Learning Studio. At the end of this article, you will learn how to use Pytorch pretrained DenseNet 201 model to classify different animals into 48 distinct categories.

Azure 52
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Data exploration and model development were conducted using well-known machine learning (ML) tools such as Jupyter or Apache Zeppelin notebooks. Apache Hive was used to provide a tabular interface to data stored in HDFS, and to integrate with Apache Spark SQL. This also led to a backlog of data that needed to be ingested.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly Media

As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. What does a modern technology stack for streamlined ML processes look like? Why: Data Makes It Different. All ML projects are software projects.

ML 145
article thumbnail

Using Azure ML to Train a Serengeti Data Model, Fast Option Pricing with DL, and How To Connect a…

ODSC - Open Data Science

Using Azure ML to Train a Serengeti Data Model, Fast Option Pricing with DL, and How To Connect a GPU to a Container Using Azure ML to Train a Serengeti Data Model for Animal Identification In this article, we will cover how you can train a model using Notebooks in Azure Machine Learning Studio.

Azure 52
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

Alignment to other tools in the organization’s tech stack Consider how well the MLOps tool integrates with your existing tools and workflows, such as data sources, data engineering platforms, code repositories, CI/CD pipelines, monitoring systems, etc. and Pandas or Apache Spark DataFrames.