Remove Data Lakes Remove Data Preparation Remove Data Science
article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business?

article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

With this full-fledged solution, you don’t have to spend all your time and effort combining different services or duplicating data. Overview of One Lake Fabric features a lake-centric architecture, with a central repository known as OneLake. Now, we can save the data as delta tables to use later for sales analytics.

Power BI 284
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data mining

Dataconomy

It’s an integral part of data analytics and plays a crucial role in data science. By utilizing algorithms and statistical models, data mining transforms raw data into actionable insights. Each stage is crucial for deriving meaningful insights from data.

article thumbnail

MAS AI/ML Modernization Accelerator: Air Compressor Use Case

IBM Data Science in Practice

All data scientists could leverage our patterns during an engagement. These patterns ensure consistency, efficiency, and collaboration among data science teams, making the MAS AI/ML modernization process smoother and scalable. We are leveraging Air Compressors data, but the solutions are generalizable.

ML 130
article thumbnail

How Northpower used computer vision with AWS to automate safety inspection risk assessments

AWS Machine Learning Blog

Data preparation SageMaker Ground Truth employs a human workforce made up of Northpower volunteers to annotate a set of 10,000 images. The model was then fine-tuned with training data from the data preparation stage. The sunburst graph below is a visualization of this classification.

AWS 116
article thumbnail

Apply fine-grained data access controls with AWS Lake Formation in Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

You can streamline the process of feature engineering and data preparation with SageMaker Data Wrangler and finish each stage of the data preparation workflow (including data selection, purification, exploration, visualization, and processing at scale) within a single visual interface.

AWS 93
article thumbnail

FMOps/LLMOps: Operationalize generative AI and differences with MLOps

AWS Machine Learning Blog

These teams are as follows: Advanced analytics team (data lake and data mesh) – Data engineers are responsible for preparing and ingesting data from multiple sources, building ETL (extract, transform, and load) pipelines to curate and catalog the data, and prepare the necessary historical data for the ML use cases.

AI 122