article thumbnail

Building a Life Sciences Knowledge Graph with a Data Lake

databricks

We thank Vishnu Vettrivel, Founder, and Alex Thomas, Principal Data Scientist, for their contributions. This is a collaborative post from Databricks and wisecube.ai.

article thumbnail

Here is how IBM’s Data Scientists look at Data-Driven Future

Dataconomy

An aspiration to create a data-driven future has resulted in massive data lakes, where even the most experienced data scientists can drown in. Today, it’s all about what you do with that data that determines your success. Without data, you simply can’t. And IBM has the recipe for this.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business?

article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources. Data Type and Processing.

article thumbnail

Differentiating Between Data Lakes and Data Warehouses

Smart Data Collective

While there is a lot of discussion about the merits of data warehouses, not enough discussion centers around data lakes. We talked about enterprise data warehouses in the past, so let’s contrast them with data lakes. Both data warehouses and data lakes are used when storing big data.

article thumbnail

Streaming Machine Learning Without a Data Lake

ODSC - Open Data Science

Be sure to check out his talk, “ Apache Kafka for Real-Time Machine Learning Without a Data Lake ,” there! The combination of data streaming and machine learning (ML) enables you to build one scalable, reliable, but also simple infrastructure for all machine learning tasks using the Apache Kafka ecosystem.

article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

For example, in the bank marketing use case, the management account would be responsible for setting up the organizational structure for the bank’s data and analytics teams, provisioning separate accounts for data governance, data lakes, and data science teams, and maintaining compliance with relevant financial regulations.