Remove Data Lakes Remove Data Warehouse Remove Events
article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In the ever-evolving world of big data, managing vast amounts of information efficiently has become a critical challenge for businesses across the globe. As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident.

article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

With this full-fledged solution, you don’t have to spend all your time and effort combining different services or duplicating data. Overview of One Lake Fabric features a lake-centric architecture, with a central repository known as OneLake.

Power BI 337
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Sneak peek at Microsoft Fabric price and its promising features

Dataconomy

Unified data storage : Fabric’s centralized data lake, Microsoft OneLake, eliminates data silos and provides a unified storage system, simplifying data access and retrieval. OneLake is designed to store a single copy of data in a unified location, leveraging the open-source Apache Parquet format.

Power BI 194
article thumbnail

Podcast: Deciphering Data Architectures with James Serra

ODSC - Open Data Science

In this episode, James Serra, author of “Deciphering Data Architectures: Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh” joins us to discuss his book and dive into the current state and possible future of data architectures. Interested in attending an ODSC event?

article thumbnail

Beyond data: Cloud analytics mastery for business brilliance

Dataconomy

Diagnostic analytics: Diagnostic analytics goes a step further by analyzing historical data to determine why certain events occurred. By understanding the “why” behind past events, organizations can make informed decisions to prevent or replicate them. Ensure that data is clean, consistent, and up-to-date.

Analytics 203
article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

Amazon AppFlow was used to facilitate the smooth and secure transfer of data from various sources into ODAP. Additionally, Amazon Simple Storage Service (Amazon S3) served as the central data lake, providing a scalable and cost-effective storage solution for the diverse data types collected from different systems.

AWS 79
article thumbnail

Introducing watsonx: The future of AI for business

IBM Journey to AI blog

We are also building models trained on different types of business data, including code, time-series data, tabular data, geospatial data and IT events data. With watsonx.data , businesses can quickly connect to data, get trusted insights and reduce data warehouse costs.

AI 110