This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization including a large number of data and AI professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. Gennaro Frazzingaro, Head of AI/ML at Sense.
This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers. With Iguazio, Sense’s data professionals can pull data, analyze it, train and run experiments.
Over time, we called the “thing” a data catalog , blending the Google-style, AI/ML-based relevancy with more Yahoo-style manual curation and wikis. Thus was born the data catalog. In our early days, “people” largely meant data analysts and business analysts. ML and DataOps teams). data pipelines) to support.
Popular Machine Learning Libraries, Ethical Interactions Between Humans and AI, and 10 AI Startups in APAC to Follow Demystifying Machine Learning: Popular ML Libraries and Tools In this comprehensive guide, we will demystify machine learning, breaking it down into digestible concepts for beginners, including some popular ML libraries to use.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content