Remove Data Models Remove Definition Remove ML
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly Media

This is both frustrating for companies that would prefer making ML an ordinary, fuss-free value-generating function like software engineering, as well as exciting for vendors who see the opportunity to create buzz around a new category of enterprise software. What does a modern technology stack for streamlined ML processes look like?

ML 145
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

In this post, we share how Axfood, a large Swedish food retailer, improved operations and scalability of their existing artificial intelligence (AI) and machine learning (ML) operations by prototyping in close collaboration with AWS experts and using Amazon SageMaker. This is a guest post written by Axfood AB.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate

AWS Machine Learning Blog

The ZMP analyzes billions of structured and unstructured data points to predict consumer intent by using sophisticated artificial intelligence (AI) to personalize experiences at scale. Hosted on Amazon ECS with tasks run on Fargate, this platform streamlines the end-to-end ML workflow, from data ingestion to model deployment.

AWS 111
article thumbnail

MLOps Journey: Building a Mature ML Development Process

The MLOps Blog

Data scientists often lack focus, time, or knowledge about software engineering principles. As a result, poor code quality and reliance on manual workflows are two of the main issues in ML development processes. You need to think about and improve the data, the model, and the code, which adds layers of complexity.

ML 59
article thumbnail

Responsible AI at Scale: Women in Big Data & LinkedIn

Women in Big Data

During the Keynote talk Responsible AI @ Kumo AI , Hema Raghavan (Kumo AI Co-Founder & Head of Engineering) showcased platform solutions that make machine learning on relational data simple, performant, and scalable.

article thumbnail

Develop and train large models cost-efficiently with Metaflow and AWS Trainium

AWS Machine Learning Blog

In 2024, however, organizations are using large language models (LLMs), which require relatively little focus on NLP, shifting research and development from modeling to the infrastructure needed to support LLM workflows. Metaflow’s coherent APIs simplify the process of building real-world ML/AI systems in teams.

AWS 117
article thumbnail

How to Use Machine Learning (ML) for Time Series Forecasting?—?NIX United

Mlearning.ai

How to Use Machine Learning (ML) for Time Series Forecasting — NIX United The modern market pace calls for a respective competitive edge. Data forecasting has come a long way since formidable data processing-boosting technologies such as machine learning were introduced.