Remove Data Models Remove ETL Remove ML
article thumbnail

TigerEye (YC S22) Is Hiring a Full Stack Engineer

Hacker News

Here are a few of the things that you might do as an AI Engineer at TigerEye: - Design, develop, and validate statistical models to explain past behavior and to predict future behavior of our customers’ sales teams - Own training, integration, deployment, versioning, and monitoring of ML components - Improve TigerEye’s existing metrics collection and (..)

article thumbnail

How AI and ML Can Transform Data Integration

Smart Data Collective

The upsurge of data (with the introduction of non-traditional data sources like streaming data, machine logs, etc.) along with traditional ones challenge old models of data integration. Why is Data Integration a Challenge for Enterprises?

ML 133
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Remote Data Science Jobs: 5 High-Demand Roles for Career Growth

Data Science Dojo

Growth Outlook: Companies like Google DeepMind, NASA’s Jet Propulsion Lab, and IBM Research actively seek research data scientists for their teams, with salaries typically ranging from $120,000 to $180,000. With the continuous growth in AI, demand for remote data science jobs is set to rise.

article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Data exploration and model development were conducted using well-known machine learning (ML) tools such as Jupyter or Apache Zeppelin notebooks. Apache Hive was used to provide a tabular interface to data stored in HDFS, and to integrate with Apache Spark SQL. HBase is employed to offer real-time key-based access to data.

article thumbnail

Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate

AWS Machine Learning Blog

The ZMP analyzes billions of structured and unstructured data points to predict consumer intent by using sophisticated artificial intelligence (AI) to personalize experiences at scale. Hosted on Amazon ECS with tasks run on Fargate, this platform streamlines the end-to-end ML workflow, from data ingestion to model deployment.

AWS 119
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

This post was written in collaboration with Bhajandeep Singh and Ajay Vishwakarma from Wipro’s AWS AI/ML Practice. Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models.

AWS 134
article thumbnail

Exploring the Power of Data Warehouse Functionality

Pickl AI

Let’s delve into the key components that form the backbone of a data warehouse: Source Systems These are the operational databases, CRM systems, and other applications that generate the raw data feeding the data warehouse. Data Extraction, Transformation, and Loading (ETL) This is the workhorse of architecture.