article thumbnail

Data Fabric and Address Verification Interface

IBM Data Science in Practice

Ensuring high-quality data A crucial aspect of downstream consumption is data quality. Studies have shown that 80% of time is spent on data preparation and cleansing, leaving only 20% of time for data analytics. This leaves more time for data analysis. Let’s use address data as an example.

article thumbnail

Enhance call center efficiency using batch inference for transcript summarization with Amazon Bedrock

AWS Machine Learning Blog

In the following sections, we provide a detailed, step-by-step guide on implementing these new capabilities, covering everything from data preparation to job submission and output analysis. This use case serves to illustrate the broader potential of the feature for handling diverse data processing tasks.

AWS 105
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Modern Data Management Essentials: Exploring Data Fabric

Precisely

This satisfies the needs of data owners, who require a simple way to make data products available to users and keep them up to date, and data users who demand user-friendly, self-service methods for finding and accessing trusted data. Increase metadata maturity.

article thumbnail

Data Quality in Machine Learning

Pickl AI

Bias Systematic errors introduced into the data due to collection methods, sampling techniques, or societal biases. Bias in data can result in unfair and discriminatory outcomes. Read More: Data Observability vs Data Quality Data Cleaning and Preprocessing Techniques This is a critical step in preparing data for analysis.

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

See also Thoughtworks’s guide to Evaluating MLOps Platforms End-to-end MLOps platforms End-to-end MLOps platforms provide a unified ecosystem that streamlines the entire ML workflow, from data preparation and model development to deployment and monitoring.