This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Summary: Choosing the right ETL tool is crucial for seamless data integration. Top contenders like Apache Airflow and AWS Glue offer unique features, empowering businesses with efficient workflows, high data quality, and informed decision-making capabilities. Choosing the right ETL tool is crucial for smooth data management.
This has created many different data quality tools and offerings in the market today and we’re thrilled to see the innovation. People will need high-quality data to trust information and make decisions. Data Profiling — Statistics such as min, max, mean, and null can be applied to certain columns to understand its shape.
The implementation of a data vault architecture requires the integration of multiple technologies to effectively support the design principles and meet the organization’s requirements. The most important reason for using DBT in Data Vault 2.0 Managing a data vault with SQL is a real challenge.
Organisations leverage diverse methods to gather data, including: Direct Data Capture: Real-time collection from sensors, devices, or web services. Database Extraction: Retrieval from structured databases using query languages like SQL. Aggregation: Summarising data into meaningful metrics or aggregates.
Thankfully there are open-source projects that don’t make you parse SQL into grammars yourself (ain’t nobody got time for that!), SQL Linting saves tons of time and ensures your team is looking for deeper logical issues in the PR instead of basic naming and formatting mistakes. such as SQLFluff.
To power AI and analytics workloads across your transactional and purpose-built databases, you must ensure they can seamlessly integrate with an open data lakehouse architecture without duplication or additional extract, transform, load (ETL) processes.
At a high level, we are trying to make machine learning initiatives more human capital efficient by enabling teams to more easily get to production and maintain their model pipelines, ETLs, or workflows. Like they didn’t have to think about, you know, dataobservability, but look, if you provided those data, we captured things about it.
Summary: Data engineering tools streamline data collection, storage, and processing. Tools like Python, SQL, Apache Spark, and Snowflake help engineers automate workflows and improve efficiency. Learning these tools is crucial for building scalable data pipelines.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content