Remove Data Pipeline Remove Data Preparation Remove SQL
article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

Let’s explore each of these components and its application in the sales domain: Synapse Data Engineering: Synapse Data Engineering provides a powerful Spark platform designed for large-scale data transformations through Lakehouse. Here, we changed the data types of columns and dealt with missing values.

Power BI 233
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Conventional ML development cycles take weeks to many months and requires sparse data science understanding and ML development skills. Business analysts’ ideas to use ML models often sit in prolonged backlogs because of data engineering and data science team’s bandwidth and data preparation activities.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Snowflake Snowpark: cloud SQL and Python ML pipelines

Snorkel AI

[link] Ahmad Khan, head of artificial intelligence and machine learning strategy at Snowflake gave a presentation entitled “Scalable SQL + Python ML Pipelines in the Cloud” about his company’s Snowpark service at Snorkel AI’s Future of Data-Centric AI virtual conference in August 2022. Welcome everybody.

SQL 52
article thumbnail

Snowflake Snowpark: cloud SQL and Python ML pipelines

Snorkel AI

[link] Ahmad Khan, head of artificial intelligence and machine learning strategy at Snowflake gave a presentation entitled “Scalable SQL + Python ML Pipelines in the Cloud” about his company’s Snowpark service at Snorkel AI’s Future of Data-Centric AI virtual conference in August 2022. Welcome everybody.

SQL 52
article thumbnail

Use Snowflake as a data source to train ML models with Amazon SageMaker

AWS Machine Learning Blog

In order to train a model using data stored outside of the three supported storage services, the data first needs to be ingested into one of these services (typically Amazon S3). This requires building a data pipeline (using tools such as Amazon SageMaker Data Wrangler ) to move data into Amazon S3.

ML 128
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift uses SQL to analyze structured and semi-structured data across data warehouses, operational databases, and data lakes, using AWS-designed hardware and ML to deliver the best price-performance at any scale. You can use query_string to filter your dataset by SQL and unload it to Amazon S3.

ML 123
article thumbnail

How Do You Call Snowflake Stored Procedures Using dbt Hooks?

phData

Snowflake AI Data Cloud is one of the most powerful platforms, including storage services supporting complex data. Integrating Snowflake with dbt adds another layer of automation and control to the data pipeline. Snowflake stored procedures and dbt Hooks are essential to modern data engineering and analytics workflows.