Remove Data Pipeline Remove Data Scientist Remove DataOps
article thumbnail

DataOps vs. DevOps: What’s the Difference?

Alation

DataOps and DevOps are two distinctly different pursuits. But where DevOps focuses on product development, DataOps aims to reduce the time from data need to data success. At its best, DataOps shortens the cycle time for analytics and aligns with business goals. What is DataOps? What is DevOps?

DataOps 59
article thumbnail

What Is DataOps? Definition, Principles, and Benefits

Alation

What exactly is DataOps ? The term has been used a lot more of late, especially in the data analytics industry, as we’ve seen it expand over the past few years to keep pace with new regulations, like the GDPR and CCPA. In essence, DataOps is a practice that helps organizations manage and govern data more effectively.

DataOps 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What Do Data Scientists Do? A Guide to AI Maturity, Challenges, and Solutions

DataRobot Blog

According to IDC , 83% of CEOs want their organizations to be more data-driven. Data scientists could be your key to unlocking the potential of the Information Revolution—but what do data scientists do? What Do Data Scientists Do? Data scientists drive business outcomes. Download Now.

article thumbnail

The Audience for Data Catalogs and Data Intelligence

Alation

The audience grew to include data scientists (who were even more scarce and expensive) and their supporting resources (e.g., ML and DataOps teams). After that came data governance , privacy, and compliance staff. Power business users and other non-purely-analytic data citizens came after that.

DataOps 52
article thumbnail

How HR Tech Company Sense Scaled their ML Operations using Iguazio

Iguazio

Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization including a large number of data and AI professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. First, the data lake is fed from a number of data sources.

ML 52
article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

It helps companies streamline and automate the end-to-end ML lifecycle, which includes data collection, model creation (built on data sources from the software development lifecycle), model deployment, model orchestration, health monitoring and data governance processes.

Big Data 106
article thumbnail

How Sense Uses Iguazio as a Key Component of Their ML Stack

Iguazio

Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization, including a large number of data and data science professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. Gennaro Frazzingaro, Head of AI/ML at Sense.

ML 52