Remove Data Pipeline Remove Database Remove Demo
article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning Blog

Agent Creator is a versatile extension to the SnapLogic platform that is compatible with modern databases, APIs, and even legacy mainframe systems, fostering seamless integration across various data environments. The following demo shows Agent Creator in action. Chunker Snap – Segments large texts into manageable pieces.

AI 89
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Database name : Enter dev. Database user : Enter awsuser. SageMaker Canvas integration with Amazon Redshift provides a unified environment for building and deploying machine learning models, allowing you to focus on creating value with your data rather than focusing on the technical details of building data pipelines or ML algorithms.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How SnapLogic built a text-to-pipeline application with Amazon Bedrock to translate business intent into action

Flipboard

The SnapLogic Intelligent Integration Platform (IIP) enables organizations to realize enterprise-wide automation by connecting their entire ecosystem of applications, databases, big data, machines and devices, APIs, and more with pre-built, intelligent connectors called Snaps.

Database 159
article thumbnail

Future-Proofing Your App: Strategies for Building Long-Lasting Apps

Iguazio

The 4 Gen AI Architecture Pipelines The four pipelines are: 1. The Data Pipeline The data pipeline is the foundation of any AI system. It's responsible for collecting and ingesting the data from various external sources, processing it and managing the data.

article thumbnail

Use Amazon DocumentDB to build no-code machine learning solutions in Amazon SageMaker Canvas

AWS Machine Learning Blog

Amazon DocumentDB is a fully managed native JSON document database that makes it straightforward and cost-effective to operate critical document workloads at virtually any scale without managing infrastructure. On the Import data page, for Data Source , choose DocumentDB and Add Connection. Finally, select your read preference.

article thumbnail

Building and Scaling Gen AI Applications with Simplicity, Performance and Risk Mitigation in Mind Using Iguazio (acquired by McKinsey) and MongoDB

Iguazio

MongoDB for end-to-end AI data management MongoDB Atlas , an integrated suite of data services centered around a multi-cloud NoSQL database, enables developers to unify operational, analytical, and AI data services to streamline building AI-enriched applications. In the end, we’ll provide resources on how to get started.

AI 132
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift uses SQL to analyze structured and semi-structured data across data warehouses, operational databases, and data lakes, using AWS-designed hardware and ML to deliver the best price-performance at any scale. Enter a stack name, such as Demo-Redshift. yaml locally.

ML 123