Remove Data Preparation Remove Database Remove SQL
article thumbnail

Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks

AWS Machine Learning Blog

In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, analyze, visualize, and integrate data from various sources before using it in their ML training and inference.

SQL 108
article thumbnail

Top 6 Azure Synapse Analytics Interview Questions

Analytics Vidhya

It is intended to assist organizations in simplifying the big data and analytics process by providing a consistent experience for data preparation, administration, and discovery. Introduction Microsoft Azure Synapse Analytics is a robust cloud-based analytics solution offered as part of the Azure platform.

Azure 271
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Empower your career – Discover the 10 essential skills to excel as a data scientist in 2023

Data Science Dojo

This includes sourcing, gathering, arranging, processing, and modeling data, as well as being able to analyze large volumes of structured or unstructured data. The goal of data preparation is to present data in the best forms for decision-making and problem-solving.

article thumbnail

Import a fine-tuned Meta Llama 3 model for SQL query generation on Amazon Bedrock

AWS Machine Learning Blog

In this post, we demonstrate the process of fine-tuning Meta Llama 3 8B on SageMaker to specialize it in the generation of SQL queries (text-to-SQL). Solution overview We walk through the steps of fine-tuning an FM with using SageMaker, and importing and evaluating the fine-tuned FM for SQL query generation using Amazon Bedrock.

SQL 116
article thumbnail

Transform your data into insights: The data analyst’s guide to Power BI

Data Science Dojo

The role of a data analyst is to turn raw data into actionable information that can inform and drive business strategy. They use various tools and techniques to extract insights from data, such as statistical analysis, and data visualization. Check out this course and learn Power BI today!

Power BI 221
article thumbnail

An integrated experience for all your data and AI with Amazon SageMaker Unified Studio (preview)

Flipboard

Data processing and SQL analytics Analyze, prepare, and integrate data for analytics and AI using Amazon Athena, Amazon EMR, AWS Glue, and Amazon Redshift. Data and AI governance Publish your data products to the catalog with glossaries and metadata forms. option("multiLine", "true").option("header",

SQL 160
article thumbnail

Tackling AI’s data challenges with IBM databases on AWS

IBM Journey to AI blog

The existence of data silos and duplication, alongside apprehensions regarding data quality, presents a multifaceted environment for organizations to manage. Also, traditional database management tasks, including backups, upgrades and routine maintenance drain valuable time and resources, hindering innovation.

AWS 93