Remove Data Preparation Remove DataOps Remove ML
article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

Instead, businesses tend to rely on advanced tools and strategies—namely artificial intelligence for IT operations (AIOps) and machine learning operations (MLOps)—to turn vast quantities of data into actionable insights that can improve IT decision-making and ultimately, the bottom line.

Big Data 106
article thumbnail

Authoring custom transformations in Amazon SageMaker Data Wrangler using NLTK and SciPy

AWS Machine Learning Blog

In other words, companies need to move from a model-centric approach to a data-centric approach.” – Andrew Ng A data-centric AI approach involves building AI systems with quality data involving data preparation and feature engineering. Custom transforms can be written as separate steps within Data Wrangler.

AWS 95
article thumbnail

Is your model good? A deep dive into Amazon SageMaker Canvas advanced metrics

AWS Machine Learning Blog

Although machine learning (ML) can provide valuable insights, ML experts were needed to build customer churn prediction models until the introduction of Amazon SageMaker Canvas. Additional key topics Advanced metrics are not the only important tools available to you for evaluating and improving ML model performance.

ML 91