Remove Data Preparation Remove Demo Remove ML
article thumbnail

Revolutionize your ML workflow: 5 drag and drop tools for streamlining your pipeline

Data Science Dojo

Drag and drop tools have revolutionized the way we approach machine learning (ML) workflows. Gone are the days of manually coding every step of the process – now, with drag-and-drop interfaces, streamlining your ML pipeline has become more accessible and efficient than ever before. H2O.ai H2O.ai

ML 195
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

This year, generative AI and machine learning (ML) will again be in focus, with exciting keynote announcements and a variety of sessions showcasing insights from AWS experts, customer stories, and hands-on experiences with AWS services.

AWS 89
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2023

AWS Machine Learning Blog

Now all you need is some guidance on generative AI and machine learning (ML) sessions to attend at this twelfth edition of re:Invent. In addition to several exciting announcements during keynotes, most of the sessions in our track will feature generative AI in one form or another, so we can truly call our track “Generative AI and ML.”

AWS 132
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. SageMaker Studio is the first fully integrated development environment (IDE) for ML. For Prepare template , select Template is ready. Enter a stack name, such as Demo-Redshift.

ML 123
article thumbnail

Speed up Your ML Projects With Spark

Towards AI

This practice vastly enhances the speed of my data preparation for machine learning projects. We will use this table to demo and test our custom functions. within each project folder. Do you notice that the two ID fields, ID1 and ID2, do not form a primary key? The three functions below are created for this purpose. .")

ML 59
article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning Blog

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

ML 105
article thumbnail

Collaborate Smarter, Not Harder: Comet’s Integrations for Effective ML Project Management

Heartbeat

However, managing machine learning projects can be challenging, especially as the size and complexity of the data and models increase. Without proper tracking, optimization, and collaboration tools, ML practitioners can quickly become overwhelmed and lose track of their progress. This is where Comet comes in.

ML 59