Remove Data Preparation Remove EDA Remove ML
article thumbnail

Predicting the 2024 U.S. Presidential Election Winner Using Machine Learning

Towards AI

Predicting the elections, however, presents challenges unique to it, such as the dynamic nature of voter preferences, non-linear interactions, and latent biases in the data. The points to cover in this article are as follows: Generating synthetic data to illustrate ML modelling for election outcomes.

article thumbnail

LLMOps demystified: Why it’s crucial and best practices for 2023

Data Science Dojo

Some projects may necessitate a comprehensive LLMOps approach, spanning tasks from data preparation to pipeline production. Exploratory Data Analysis (EDA) Data collection: The first step in LLMOps is to collect the data that will be used to train the LLM.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Speed up Your ML Projects With Spark

Towards AI

This practice vastly enhances the speed of my data preparation for machine learning projects. All you need to do is import them to where they are needed, like below - my-project/ - EDA-demo.ipynb - spark_utils.py # then in EDA-demo.ipynbimport spark_utils as sut I plan to share these helpful pySpark functions in a series of articles.

ML 80
article thumbnail

Is your model good? A deep dive into Amazon SageMaker Canvas advanced metrics

AWS Machine Learning Blog

Although machine learning (ML) can provide valuable insights, ML experts were needed to build customer churn prediction models until the introduction of Amazon SageMaker Canvas. Additional key topics Advanced metrics are not the only important tools available to you for evaluating and improving ML model performance.

ML 98
article thumbnail

Building ML Platform in Retail and eCommerce

The MLOps Blog

And eCommerce companies have a ton of use cases where ML can help. The problem is, with more ML models and systems in production, you need to set up more infrastructure to reliably manage everything. And because of that, many companies decide to centralize this effort in an internal ML platform. But how to build it?

ML 59
article thumbnail

The AI Process

Towards AI

In fact, AI/ML graduate textbooks do not provide a clear and consistent description of the AI software engineering process. Therefore, I thought it would be helpful to give a complete description of the AI engineering process or AI Process, which is described in most AI/ML textbooks [5][6]. 85% or more of AI projects fail [1][2].

AI 98
article thumbnail

Accelerate client success management through email classification with Hugging Face on Amazon SageMaker

AWS Machine Learning Blog

The machine learning (ML) model classifies new incoming customer requests as soon as they arrive and redirects them to predefined queues, which allows our dedicated client success agents to focus on the contents of the emails according to their skills and provide appropriate responses.