Remove Data Preparation Remove Hadoop Remove Hypothesis Testing
article thumbnail

Must-Have Skills for a Machine Learning Engineer

Pickl AI

Concepts such as probability distributions, hypothesis testing , and Bayesian inference enable ML engineers to interpret results, quantify uncertainty, and improve model predictions. Data Transformation Transforming data prepares it for Machine Learning models.

article thumbnail

Building ML Platform in Retail and eCommerce

The MLOps Blog

The objective of an ML Platform is to automate repetitive tasks and streamline the processes starting from data preparation to model deployment and monitoring. One might want to utilize an off-the-shelf ML Ops Platform to maintain different versions of data. How to set up a data processing platform?

ML 59
article thumbnail

Introduction to applied data science 101: Key concepts and methodologies 

Data Science Dojo

Statistical analysis and hypothesis testing Statistical methods provide powerful tools for understanding data. An Applied Data Scientist must have a solid understanding of statistics to interpret data correctly.