Remove Data Quality Remove DataOps Remove Machine Learning
article thumbnail

How to Ensure Continuous Improvement With Data Governance

Alation

The goal of DataOps is to create predictable delivery and change management of data and all data-related artifacts. DataOps practices help organizations overcome challenges caused by fragmented teams and processes and delays in delivering data in consumable forms. So how does data governance relate to DataOps?

article thumbnail

The Audience for Data Catalogs and Data Intelligence

Alation

The product concept back then went something like: In a world where enterprises have numerous sources of data, let’s make a thing that helps people find the best data asset to answer their question based on what other users were using. And to determine “best,” we’d ingest log files and leverage machine learning.

DataOps 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Access to high-quality data can help organizations start successful products, defend against digital attacks, understand failures and pivot toward success. Emerging technologies and trends, such as machine learning (ML), artificial intelligence (AI), automation and generative AI (gen AI), all rely on good data quality.

article thumbnail

In Uncertain Times, Data Integrity is More Important Than Ever

Precisely

They shore up privacy and security, embrace distributed workforce management, and innovate around artificial intelligence and machine learning-based automation. The key to success within all of these initiatives is high-integrity data. Only 46% of respondents rate their data quality as “high” or “very high.”

article thumbnail

Is your model good? A deep dive into Amazon SageMaker Canvas advanced metrics

AWS Machine Learning Blog

Although machine learning (ML) can provide valuable insights, ML experts were needed to build customer churn prediction models until the introduction of Amazon SageMaker Canvas. Refer to Predict customer churn with no-code machine learning using Amazon SageMaker Canvas for a full description.

ML 90
article thumbnail

What Is Data Observability and Why You Need It?

Precisely

For some time now, data observabilit y has been an important factor in software engineering, but its application within the realm of data stewardship is a relatively new phenomenon. Data observability is a foundational element of data operations (DataOps). Data observability helps you manage data quality at scale.

article thumbnail

What Is a Data Fabric and How Does a Data Catalog Support It?

Alation

This “analysis” is made possible in large part through machine learning (ML); the patterns and connections ML detects are then served to the data catalog (and other tools), which these tools leverage to make people- and machine-facing recommendations about data management and data integrations.

DataOps 52